
Predictive Text Dictionary
readInDictionary()
The following that I will be referring to will be the readInDictionary method which is shown in
figure 1, where I will refer to pieces of code to explain how this method works. The data
structure used to help do this was the trie data structure. To store all the dictionary entries
we had to initialise a new dictionary object in the form of a trie data structure and open a text
file using a scanner. If the file path is wrong, or doesn't exist then the method catches a
FileNotFoundException, which can be seen in the terminal.

The output of the file should include the index, the word and then the frequency which can
be shown in test 4s figures. Split(" ") is used to parse through the words and the frequency is
taken through parts[1] and parts[2]. A try catch block is in place to determine whether the
frequency is an integer, if not the word is skipped and the method continues. Once complete
the word is inserted into the dictionary object created earlier using the insert() method. The
insert() method stores the frequency using a TrieData object as a sequence of child nodes
for each character of the word, as shown in figure 2. Then the readInDictionary() method is
complete and the created dictionary object will contain the words and their frequencies and
now a functioning predictive dictionary.

Figure 1: readInDictionary() method code to refer to throughout my explanation

Figure 2: The code for the insert() method

getMostFrequentWordWithPrefix()
The following code that I will be referring to will be the getMostFrequentWordWithPrefix()
method which is shown in figure 3. The getMostFrequentWordWithPrefix() method finds the
most frequently used word in the trie that starts with a given prefix. A text file is read through
first with numerous words. It first uses getNode() to locate the node and matches the last
character of the prefix. If the prefix doesn’t exist in the trie, it returns null.

If the prefix is found, the method performs a depth-first search from that node, exploring all
possible word continuations and checks the frequency stored in the node's TrieData. It
keeps track of the word with the highest frequency and returns it as the most relevant
suggestion. The depth-first search uses a stack for all the word combinations from the letters
imputed from the user. The string builder is used to build each of the words given the
characters inputted by the user. This search method is chosen over breadth-first search
because it's more memory efficient. The depth-first search uses a stack which is most
optimal for this problem as it explores one path at a time, compared to breadth-first search
which explores multiple paths at a time making it more memory costly. This method is what
creates the predictive text feature in the TextAreaDemo GUI which provides words to finish
when typing in, as shown in figure 4.

Figure 3: getMostFrequentWordWithPrefix() method code to refer to throughout my
explanation

Figure 4: Example of the predictive text feature in the TextAreaDemo GUI helping finish off
the word help ‘from’ the input ‘fr’

Extension idea 1
My extension idea was to make a toggle button that changes the lights and the colour of the
background and the text, similar to how it can be done on an application like instagram. I
usually like interacting with darker colours and modes on my phone like this, similar to
instagram how I have it on the darker mode. Now I thought that this mode could potentially
be more visually appealing to users as it is to me. Luckily enough I have had previous
experience with swing so creating a feature like this was something that I was capable of
doing on my own. This button was created using a JButton where I chose to place this
button on the bottom of the screen. The method changeColour has an if else statement that
contains two options. The if statement explains that when ‘Dark Mode’ is pressed, it changes
the background of the background to black, and the text colour to white. The else statement
explains that when ‘Light Mode’ is pressed, it changes the background of the textbox back to
its original colour of white, and the text colour back to black. This is shown in figure 18.

Figure 18: Pictures of the light and dark mode in the GUI for textAreaDemo

Extension idea 2
My extension idea was to make a clear text button that clears the text on the screen. This
makes it easier for users that are typing long words or have decided to type something very
long to click the clear button to clear the text instead of having to delete all the text manually.
This was done by creating another Jbutton that was coloured red to stand out in the GUI and
show to the users that this will clear/delete the text on the screen. This is styled very similar
to my dark mode button, and is created very similarly. The line of code
clearButton.addActionListener(e -> textArea.setText("")); is the line that gives the function to
when the clear text button is clicked, the text is removed from the GUI. The implementation
of this button is shown in figure 19.

Figure 19: Shows the clear text button on the bottom of the figure

